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ABSTRACT

This dissertation explores the distributional properties

of comonly used statistics developed in the course of

empirical model building. A review of some of the more note-

worthy efforts to investigate the distribution of the coef-

ficient of determination, R 2, in best subset regression is

given. To overcome the shortcomings of these results, a

permutation test based on Fisher's randomization test is

developed to provide a practical basis for assessing the

* statistical significance of a regression in such situations.

An investigation is made into the distributional pro-

perties of the multiple correlation coefficient in the

choice of a transformation of the dependent variable, y.

The study investigates the possibility that pedestrian use

of transformations, such as y* - (y~c)P, may lead to an

inflationary effect on the sample correlation.

A practical management science application of the

statistical procedures developed in this study is explored

in the area of parametric cost estimation.
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CHAPTER I

INTRODUCTION

The most widely used and abused data analytic metho-

dology is regression analysis (4). Many books, notably (7),

(9) and (US), and thousands of research papers attest to the

popularity and importance of these powerful statistical

procedures. The advent of high-speed digital computers and

associated statistical software packages has made regression

analysis accessible to users in all fields of research. In

particular the new technological developments in time-

shared computing literally bring these and other procedures

into the manager's office providing the mieans for assessing

decision alternatives at a moment's notice. Sophisticated

techniques, now routinely applied, were impractical only 20

years ago because of enormous computational requirements.

For some methodologies, in particular empirical model

building, statistical theory is not keeping pace with ever-

expanding computational capabilities in the sense that data

analysts are developing and using algorithms which lead to

results whose statistical properties are not fully under-

stood. This statement is not intended as a criticism of

exploratory data analysis per so, but it does identify an

area of practical significance whose theoretical foundation

is shaky at best.
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Unlike confirmatory statistical techniques (such as

hypothesis testing), wherein inferences are made within the

framework of a given nodel,, the term "empirical model

building" is used to describe the process of "letting the

data speak for itself." In searching for possible relation-

ships among a collection of variables, the data analyst may

allow the sample data to answer such questions as, "Which

variables should be included in the model?" and "What model

structures should be contemplated?"

The purpose of this dissertation is to explore the dis-

tributional properties of commonly used statistics developed

in the course of empirical model building. Theoretical

results are obtained in certain tractable cases. Simulation

is employed to develop insight in those situations where

explicit mathematical results have been elusive.

It is well known that the use of empirical variable

selection techniques in multiple regression leads to

inflated values of the coefficient of determination, R.

The degree of this inflation is not well understood. What

makes the problem difficult is the fact that the distribu-

tion of R2depends not only on the underlying relationship

among the variables, but on the data analytic tools used to

develop the model. Attempts have been made to obtain

approximations and asymptotic results for special cases of

this problem. Chapter II reviews some of the more note-

worthy efforts to investigate the distribution of R2 in best
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subset regression. Best subset regression is concerned with

the problem of determining the subset of size k out of p

candidate predictor variables which maximizes sone function

of R , where k itself may be data-dependent. Special

attention is allotted an asymptotic result of Alan and

Wallenius (2). A proof of their result is provided. Since

their asymptotic distribution of R 2 is derived by allowing

the sample size to grow large, an investigation is performed

to determine an appropriate sample size for an adequate

approximation.

The approximations, alluded to above provide -insight but

little help of a practical nature in testing for statistical

significance of the sample R2 resulting from data analytic

* selection techniques. Chapter III addresses this problem.

The shortcomings of the classical statistical tests for

these situations are reviewed. In order to overcome these

limitations, a new approach is introduced which yields-an

exact test conditioned on the sample data and selection

technique. This test is most useful in situations where

the number of observations is small compared ti the number

of candidate predictor variables. In particular, this test

is valid if the number of potential predictor variables

* exceeds the available degrees of freedom. The classical F

test cannot be used in this case. Determining the power of

this test is a difficult problem and remains unsolved. A

simulation is used to compare the power of the new test to
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that of the classical F test for several cases where the

latter is valid.

Chapter IV deals with the distribution of the multiple

correlation coefficient in multiple regression when the data

is used to determine the choice of a transformation of the

dependent variable y. The family of transformations con-

sidered is of the form y* a (y~c)P. This is a widely used

family of transformations of practical importance. It is

often used, as Tukey (19) Puts it, "to remove apparent ills

from the data ... aiding in the analysis by bending the data

nearer the Procrustean bed of the assumptions underlying

conventional analysis." The data is employed to determine c

and p in such a way that the relationship between y* and a

single predictor x is more nearly linear than that between y

and x. The study investigates the possibility that pedes-

trian use of this transformation may lead to an inflationary

effect on the sample correlation. The results indicate some

interesting phenomena which are illustrated in examples and

lead to a theorem.

Chapter V explores a practical management science

application of the statistical procedures developed in this

study. A problem often faced by costing and pricing

analysts involves estimating the cost of a proposed system.

One approach to this problem is independent parametric cost

estimation. A description of this method, its advantages,

and disadvantages are given. Actual cost and performance
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data obtained from the Navy Weapons Center, China Lake,

California, are analyzed using the methodology of

Chapter III.

Chapter VI contains a discussion of the inherent

difficulties of empirical model building and identifies

some areas in which further research is required.



CHAPTER II

APPROXIMATIONS OF THE DISTRIBUTION OF R

IN BEST SUBSET REGRESSION

In recent years a great deal of interest has been

expressed in the distributional properties of R2 and other

statistical measures of fit for regression models when vari-

able selection techniques are employed. Historically,

Fisher (10) derived the general sampling distribution of R
2

when sampling from a multivariate normal distribution. The

distribution theory for the sample R2 statistic in empirical

model building is quite complex. The difficulty stems from

the fact that the distribution depends not only on the

underlying relationship among the variables but also on the

variable selection criterion.

This chapter reviews some interesting approximating

formulas and asymptotic results for the distribution of R
2

in best subset regression. Here the term "best subset

regressions" refers to the following situations. The data

analyst has a set of n independent observations on p candi-

date predictor variables and one dependent variable. The

goal of the analysis is to determine the k-variable

regression equation which maximizes the sample coefficient

of determination for various values of k. The difficulty

with this analysis is assessing the statistical significance

of R2 for a given value of k.



Diehr and Hoflin (8) utilize a Monte-Carlo approach to

devise a function purported to estimate the distribution of

the sample R2 in best subset regression for samples selected

from a p+l dimensional multivariate normal population with

zero mean and identity covariance matrix. Monte-Carlo

estimates of the (1-a) percentile points, R2 (k,p,n,oL), of

the sample distribution are obtained for selected values of

k, p, and n. This is accomplished by generating 100 samples

of size n from the null distribution and determining and

saving the maximum R2 associated with the best k-variable

regression equation for k from 1 to p. The set of 100 R2

values corresponding to a particular collection of k, p, and

n values are ordered to give estimates of the percentage

points. By visually examining some of the Monte-Carlo

results, the authors note that a function of the form

R2 (k,p,n,a) - w(l-vk)

seems to provide a reasonable fit of the simulation results

when w and v are determined from the known boundary values

R2(l,p,n,a) and R 2(p,p,n,a). The authors suggest that a

statistical test based on this formula is an improvement

over the standard tests for the empirical researcher since

the number of independent variables which has been searched

is taken into account. This test, while more appropriate

than the F test in spirit at least, would serve only to give

insight into the results. The nominal "significance level"
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is somewhat suspect since the percentile points are based

on an ad hoc fitof a Monte-Carlo distribution.

Rencher and Pun Fu-Ceayong (16) extend the results of

Diehr and Hoflin by computing the mean of the inflated R
2

under best subset selection, allowing for correlated pre-

dictor variables, and including the situation where the

number of candidate predictor variables exceeds the number

of observations.

As expected, their Monte-Carlo study indicates that

the inflation of R2 is somewhat less when the predictor

variables are intercorrelated. To supplement Monte-Carlo

estimates for the mean and percentage points of the distri-

bution of R2 under selection, the authors obtain asymptotic

approximations for these parameters. For a k-variable

model without selection, R2 has a beta distribution in the

null case (10). Thus, the distribution function of R2 is

given by

Fab(R2) 2 (R2; a,b)/8(l; a,b)

where, for 0 < x < 1,

OCx; a,b) = ta'lcl-t)b'ldt ,

a - k/2 and b * (n-k-l)/2.

The number of possible k-variable prediction equations

is N = pl/[kl(p-k)l]. By assuming the corresponding N values

of R2 are independent, the authors obtain asymptotic
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formulas for the parameters based on the beta function as N

becomes large. An upward bias results when these formulas

are applied to the Monte-Carlo data. The authors attribute

this bias to the assumption of independence noted above.

The formulas are modified to correct for this biasedness by

adjusting the value of N via a function of the form

(tn N)cN d , where c and d are empirically determined from the

Monte-Carlo results. Their final approximating formulas

for the mean and Y-th percentile of the distribution R2 are,

respectively,

2 1 1.5N"04(R 1Fb,a[l/Ctn N) ] r~i+l/w)

and

^2 *-1 l18N 04
R a,b[(1+ tn y/(tn N)

where w - (n-k-l)/2.

It is suggested that these formulas can be used as

possible guidelines for assessing the significance of R2

values obtained in best subset regression applications.

However, the empirical researcher might feel that his con-

fidence in their use is overshadowed by their ominous

appearance and computational complexity.

Zirphile (23) derives an asymptotic approximation for

the (l-a) percentiles of the distribution of R in best

subset regression, as the sample size n is made large, using

extreme value theory. This approximating formula gives

I- I Im
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percentage points which are as large as 1.5 for soSe small

values of n (16). This poor performance may be due in part

to the fact that his results are based on the assumption

that under the null hypothesis the asymptotic distribution

of R for a k-variable equation without selection is normal.

The actual distribution does not tend to normality for large

n under the null hypothesis (10) so that Zirphile's results

are of dubious value.

Alan and Wallenius (2) derive a very interesting

asymptotic result in the following

Theorem: Let Z' - (YX 1,X29 ...,Xp ) have a (p'4)-variate

normal distribution with arbitrary mean vector V and diago-

nal covariance matrix I. Given a sample of size n on Z,
I

let ril,i 2 ,...,ik denote the sample multiple correlation

coefficent between y and the k predictor variables xi ,X i2

1 < k < p. Let r2(pk) denote the maximum
ik n

of all (P) values of ril,jZ,...,ik. Then as n tends to

infinity, (n-i) r~ (p,k) converges (with probability 1) to

a random variable r2 (pk) distributed as the sum of the k

largest order statistics of a random sample of size p from

a chi-square distribution with one degree of freedom.

Proof: Let X - (X1 ,X2 ,...,3 Xp+)' . MVN(EI) and

assume is of the form
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0 0 ... 0

°22

o 0p+1,p.1

We nay assume, without loss of generality, that _ = 0.

Let x I , x2 , ... , x. be a random sample size n on X. Let
-E -

imiJul -
where

n
i-1/n x.- jul

Next, partition A as
U

all A12

and let Y' -(x1,x12,...,xln) be the first component of

each sample observation xi, i 1 ,2,...,n. Consider the

conditional distribution of
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a2
1

ail

aj

given Y "

The matrix

Y Y2 "" Yj Yn

x21 x22 ... xzj x2n

X(p+l)l x(,+1)2 "' X(p~l)j "''X(p~l)n

is column-wise independent and the jth column is conditionally

122 - 121 oil 1 u

However, since we are assuming 121 O9 we have
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x2j

x3j
x- N(2, i22).

Sicea1  a y
Since ail (yj ---xij it follows that

i) E(ai[Y-y) a 0.

n n
ii) cov(ailaklly) " ilj jl(y j y- )(Y j-) cov(xij xk ly) "

Note that cov(xiXkLy) - 0 unless j - X. Thus
n

cov(a ilvakl) I (y.-Y)2 cov(xij xkjIz)j~l

-a11 a1k'

So, given Y y yj, A2 1 ~ N(0, a11  Recall that

-l -1/2 i1/2 -l /2 1.1/2
-2  A 12 622 A21  A12 -22 1-22 22 -22 22 A21alI

and let

1 1/2Z -22 A2 1
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Then, given Y "s

1. z

^2 -t ,1/2 -, 1/22. p' .- i -2
.22 622 -22 z'

[1/2 1- /
Thus, (n-1)p' -2z' z_. ( 1 1 i1/2

- -22n=- 22)_-22Sinc (n-: 1zz 1..0

Sic 1 -1 ats. 1 we have for large n,

given Y -,

p.l 2 2
(n-l) 2  zz 1 z ~ (p) Vy.a.s. -- i=2 zi

That is, the asymptotic conditional distribution does not

depend on the conditioning value of Y. Therefore, the

distribution of (n-l)p , for large n, is chi-square with

p degrees of freedom.

Suppose we wish to consider all (t) subsets of size k

from the set {x2 ,x3,...Xp ,I  of predictor variables and

compute the sample multiple correlation coefficient between

y and each such subset. Let Ril,i 2,...,ik denote the

multiple correlation between y and the set (xil ,X1 2,...,Xik

and let

R~k) - max Ril, 2 ... k"



is

From above, we have for large n

(n-1)R 2  *Z 2 +* + + Z2
2 ... (. l) 2 3 p+l

where

zi a il-~E~7 N(O,1) .

Thus

a2  &2 a2
= 1 1 + 1 + .. 0+) )an-l)R ... pl )  1  022 033 0 pl,p+l

for large n. More generally, we see that
a 2 2 a2
ai2" a

(n" )RIi ""k Ii I i2i 2  ikik

so that

(n-l)R2 (k) - max (n-l)R.li2{ilPi2,...,i k ' '' .**ik

a 2  2
i 1 1i 21- max %a a + a +

Uil9i29. ik}  a11 0 1 2

a
2

ikk

alli ikik

a2

Note that ( 1 j a Z,3,...,p+l} represents a random
srll ojM

sample of size p from a x (l). Thus (n-l)R2 (k) is the sum
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a2

of the k largest values of or the sum of the kallJ"

largest order statistics of a random sample of size p

from a chi-square distribution with one degree of

freedom. Q.E.D.

This theorem is of particular interest since it pro-

vides information about the degree of inflation of the F

statistic in best subset regression as a corollary. Under

the null hypothesis for a particular k-variable model, the

F statistic is distributed as a constant times the

quotient of independent X 2 random variables, that is

F Z(k)Iok
X (n-l-k)/(nlk

For large n, by-Theorem 20.6 of (6) the denominator

converges in probability to 1. Thus, F converges in dis-

tribution to a random variable distributed as a x2 (k)/k or,

equivalently, as the average of k independent observations

from a chi-square distribution with one degree of freedom.

If the best subset of size k out of p predictors is

selected, the associated F statistic is given by

r2(p,k) n-l-k 1 (n-l)r (p,k) r2(p,k)
F n ' ' (__)_ a 1 n k ]ma l-Z(pk -r rncp kk  1r p,k)

n

Since rn (p,k) converges to zero as a direct result of

the Alam-Wallenius theorem, Fmax converges in distribution
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to 1r(p,k) which is distributed as 1 kX.ji+l](l), the

average of the k largest of p independent observations from

a-chi-square distribution with one degree of freedom. This

comparison of F and Fmax gives the clearest picture of the

nature of the inflation of R2 in best subset regression.

The sample size necessary for an adequate approxi-

nation by an asymptotic methodology is always of prime

concern. An investigation into this question is made by

means of a Monte-Carlo approach for the Alan-Wallenius

result. A simulation is performed in a straight-forward

manner to compare the distributions of the two statistics

involved. A random sample of size p is selected from a

chi-square distribution with one degree of freedom. The

k largest values in the sample are added together to yield

one observation on the statistic r2 (pk). This procedure

is repeated 1000"times, and a relative frequency histogram

is developed. Figure 1 shows such a histogram for
r2(8,4).

Alan and Wallenius (3) show that the distribution

function of statistic r2(p,k) can be expressed as an in-

finite linear combination of gamma distribution functions.

The shape of Figure 1 resembles the gamma density. For

these reasons, an attempt is made to fit a gamma density to

the simulation results. Recall that the gamma density is a

two-parameter function which may be written as
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xa ' • "x / O x >0

e0 rcG)

f0 otherwise

The method of moments is applied to the data presented

in Figure 1 to obtain estimates of a and B: a - 3.6 and

B 2.0. Figure 2 depicts the histogram of r2 (8,4) with

this gamma density superimposed. Table I gives percentage

points for the sample data and this gamma density.

TABLE I.

Percentage Points of r2 (8,4) and the Gamma Density

901 % 9

r (8,4) 12.15 14.18 18.91

Gamma 12.29 14.36 18.80

The distribution of r2 (8,4) appears very similar to

that of a random variable distributed as a gamma with

a a 3.6 and B a 2. It appears that the infinite sun

mentioned above may be dominated by a single gamma distri-

bution function.

To obtain an empirical distribution for the statistic

(n-1)rn2(p,k), a random sample of size n is selected from a

p+l dimensional multivariate normal population with zero

- - . o :- . .- , .- I
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mean and identity covariance matrix. The best k-variable

regression equation is then determined by use of an effi-

cient search of the ( ) possible regressions, and the
2resulting value of (n-l)r n(p,k) is saved. This process is

repeated 500 times resulting in relative frequency dis-

tributions of (n-l)r2(p,k). For p - 8 and k - 4, Figures

3-6 depict histograms of these frequencies for n - 10, 25,

50 and 100, respectively, with the superimposed density

of the gamma distribution.

The results of this simulation offer no definitive

answer to the question of appropriate sample size. However,

it is possible to form some conclusions after visually

examining the histograms. In a hypothesis testing frame-

work, the right-tail of the distributions will be important

2in the decision making process. The statistic r (p,k)

seems to overestimate the probability in the right-tail

for small values of n as can be seen in Table II. A statis-

tical test based on this distribution would appear to be a

conservative test for small values of n in that the actual

significance level is less than the nominal level.
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TABLE II.

2 2
Percentage Points of r2 (8,4), Gamma and (n-l)r (8,4)

9.01 95. 99t

r (8,4) 12.1.5 14.18 18.91

gamma. 12.29 14.36 18.80

29 r10 (8,4) 7.85 8.14 8.69

24 rz(8,4) 9.6-0 10.54 13.13

49 rs0 (8,4) 1.0.39 11.82 15.46

99 r100 (8,4) 10.41 11.91 15.68

The approximations presented in this chapter show the

approaches that have been used to explore the distributional

properties of R2 under best subset regression. These

results provide a better understanding but afford little

help of a practical nature in testing for statistical

significance of the sample R2 resulting from data analytic

selection techniques. In the next chapter, a new and exact

method to deal with this important problem is developed.

Afl
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CHAPTER III

SIGNIFICANCE TESTS AND TESTS OF MODELS

IN SUBSET REGRESSION

In Chapter II some asymptotic approximations for the

null distribution of R2 in the case where the predictor

variables are orthogonal were discussed. In this chapter,

the focus is on exact statistical tests for the finite

sample size case and the result is generalized to include

nonorthogonal predictor variables. These results will

provide a practical basis for assessing the statistical

- significance of a regression developed by any empirical

selection method.

Theoretical considerations often suggest the important

independent variables and the functional form of the

relationship. Models based on theoretical considerations

are the exception rather than the rule in most practical

managerial problems. As a result, the set of possible

predictors may be quite large and the problem of selecting

a "best" set becomes a difficult task. There are a number

of articles in the literature, notably (11), (17) and (18),

describing this problem and offering various criteria to be

used to determine the variables to be included. Lindley (13)

emphasizes that the selection criterion should be related to

the intended use of the model. Hocking (11) gives a
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description of these potential uses which include des-

cription, prediction, and control. It is generally recog-

nized that a universally best criterion for selecting a set

of predictor variables does not exist. It is not the purpose

of this chapter to discuss the advantages and disadvantages

of various selection procedures, but to determine a way of

evaluating the statistical significance of the resulting

model.

A commonly used selection procedure involves deter-

mining the adjusted multiple coefficient of determination,

Ra~),for all 2 p-l subsets of the predictor variables

where

Rj(k) M 1 - -

and R 2(k) is the coefficient of determination for the model

with k predictor variables. The subset chosen is that with

maximal R2 (k). In fact, R 2(k) plays a central role in

almost all selection criteria. This value of R 2(k), as

previously shown, can be misleadingly large. How large

must it be to be judged statistically significant? What

makes the question hard to answer is the fact that the

distribution of R 2(M for the selected model depends on the

underlying relation among the variables as well as the

selection criterion.

If p variables are being considered and all are

included in the model, the classical F test is appropriate

provided p < n-l. The test of
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H: 0y.12 ... 0

is equivalent to testing

H0: P • 2 " " " 0

where pi is the simple correlation between the dependent

variable, y, and the ith predictor, xi . The null hypothesis

is rejected if

F R2 > F(cLp,n-p-1).
(I-RZ)/n-p-I)

If R2 is significant for the full model, a reduction

in the number of predictors used is usually called for

since a model with many independent variables is expensive

to maintain, difficult to analyze and interpret, and

almost always results in larger predictor variances (21)

than a suitably selected submodel. The application of a

selection procedure to obtain a "best" submodel may result

in a submodel which is no longer statistically significant.

Cramer (5) suggests that it is possible for the value of

R2 for the full model to be statistically significant

while none of the regression coefficients have individually

significant t values. In this situation, each predictor is

making its own independent, albeit slight, contribution so

that the total effect is statistically significant. It may

not be possible to eliminate any variable or set of vari-

ables so as to maintain a significant R2.

Vak i-
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The F test cannot be used if the number of predictor

variables is larger than n-2. Common sense and sound

statistical practice require selection of a subset of pre-

dictor variables. When this selection is done empirically,

as we have seen, (and hence F) becomes inflated so that

the standard tests are invalid. Even though the distri-

butional properties of R2 under variable selection are

hopelessly complex, an exact conditional test is derived

which is valid for any variable selection technique.

Consider the hypothesis Ho: p2  = 0. Under Ho,
y-12. ...p

the joint distribution of X and Y is invariant under per-

mutations of Y. Since there are n observations, there are

N a n1 possible permutations of the y values. If the par-

ticular variable selection method being used is applied to

each of these permutations, a set of N corresponding values

of R2 could, in principle, be generated. Let R2 i),

i = l,2,...,N, be the ith smallest value in this set of N

values, and let R denote the collection of order statistics

so obtained. Let R2 denote the value of R2 associated with

2the unpermuted y values. R; e R and, by invariance,

Prob(R! > R 2(N-m)) - m/N for 1 < m < N so that the critical

2 2region R. > R (N-m) yields an exact level a - m/N test of

Ho. This test is a special case of Fisher's randomization

test. The power of this test will be discussed later in

this chapter.

The following example will help illustrate the metho-

dology. Consider the regression model
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-2.10 1.23 -. 04

-.32 -.36 .67 1

.51 - - -1.33 .69

-1.70 .01 .17 B2

where (Y,XjX 2)' is distributed as MVN(O,0). There are

n a 4 observations and p = 2 possible predictors. All

possible regressions are calculated. The maximum adjusted

R2 criterion leads to the prediction equation

y -2.09 + 3.19 x 2

with R, - .92. Using this criterion to select a "best"

subset for each of the 24 possible permutations of the y

values yields the values of R shown in Figure 7. Note that

a R2(1S); that is, R! is the 15th order statistic. If

a value of R2 is chosen at random from the set R.

grob(R 2 > R! IHo true) - 9/24.
This result is compatible with Ho and gives little evidence

to indicate that Ho is false.
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Figure 7: Plot of R(i) in the Set R

The statistical test illustrated in the above example

is an exact test. Unfortunately, this test is not practi-

cal as a result of the large number of possible permutations

that are required even for small values of n. For a sample

of n = 25 observations, N would be over 1025 The calcu-

lations associated with this number of permutations make

this approach computationally infeasible.

Since it is not practical to determine the entire set

R. sampling schemes will be explored. Note that only the

2relative position of R* in R is needed in order to measure

the probability of a Type I error for the conditional test.

As a first approach to assessing the extremeness of R

relative to R we consider a nonparametric tolerance
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interval argument (22). Based on a random sample of s

permutations, where

it is known that

Prob(100(1-d)t of the R2 in R < R2(s)) > g

where R2(s) is the largest R2 value in the sample. For

example, with g - .99 and d - .1,

S a s - 44.

Thus, if 44 random permutations are obtained and their

corresponding R2 values calculated, then

Prob(901 of the R in . < R2 (44)) > .99.

22Comparing R! with R2 (44) gives an indication of the

relative position of R in R. This could provide the basis

2 2for a decision rule (reject Ho if R > R2 (44)), but the

significance level is only loosely related to the parameters

g and d. For this example, the significance level would be

approximately .1.

In order to obtain an exact test, this approach must

be modified. Since extremely large values of R2 relative

to the set R provide evidence critical of the null hypo-

thesis, the following decision rule is appealing: reject

2 2 2 2Ho if R; > R (s) where R (s) is the largest R value in a
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sample resulting from s random permutations. How large must

s be in order that the test have a significance level of a?

If Ho is true, Rj is just as likely to be any of the (s+l)

observed R2 values. That is,

2 2Prob(R* > R2(s) I Ho is true) = 1/(s+l).

A level a test is obtained by taking s perautations of

the original y values where s is the smallest integer greater

than or equal to (1-a)/a. For example, for a = .0S, s - .95/.05

= 19 permutations must be used.

The determination of the power that the permutation

test will achieve against various alternatives is a diffi-

cult problem and remains unsolved. A simulation is employed

to compare the power of the new test to that of the F test

in some situations where the latter is valid. In these

situations, the F test is optimal (1). But if the new test

has comparable power, it will provide a alternative to the

F test that is valid under a wider set of conditions, namely,

when variable selection techniques are employed. In par-

ticular, random samples of size 30 are generated on the

vector (Y,XI,X2 ,...,XS)' which has a 6-dimensional multi-

variate normal distribution with mean vector 0 and

covariance matrix . The data is analyzed by fitting the

full model
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Y + +o + X3 + 64X4 + 0X2 + e'X5 
+

and no variable selection technique is used. One hundred

such samples are generated and analyzed for each distri-

bution. For each test, the fraction of these samples which

resulted in H0 being rejected gives an indication of that

test's power.

The covariance matrix is of the form

1 r1  r2  ... r

r1

r2

DI

r 5

5!

The values p rlpr2,o.,r and iare chosen to give
prespecified values for the theoretical coefficient of

detrmiatin, 2 , and to allow for various covariance

structures such as nonorthogonal predictor variables. It

is known (1) that in these situations the power of the F

test depends on the covariance structure only through the

value of p2  The purpose of this simulation is to make a

comparative study of the powers of the permutation test and

F test for the following special covariance structures.

Case 1. - and ri a r* for i 1,2,...,S.
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Case 2. 1 .9 .9 .. .9

1 .9 .. .9

1 .9

Case 3. g , and rl - r2  r* and r. 0 for
2 3 1

i - 3,4,5. The values of r, I~ an r are chosen to

2
give the desired p values.

The results of this simulation appear in Table III.

The fraction rejected by both tests is given for various

p 2values for each of the three cases. The theoretical

power of the F test also appears in the table. While these

theoretical values are listed, the actual fractions rejected

by the F test are included to give a better basis for com-

paring the corresponding fraction rejected by the permuta-

tion test based on the same data.

TABLE III.

Fraction Rejected at .05 Significance Level

2 Actual
p2  Power of Case 1 Case 2 Case 3

F test Peru. F Perm. F Perm. F

0 .050 .06 .06 .05 .07 .05 .04
.1 .196 .15 .18 .20 .19 .21 .23
.2 .418 .36 .44 .33 .39 .39 .42
.3 .6S7 .55 .67 .54 .61 .60 .69
.4 .847 .78 .8s .75 .83 .80 .87
.5 .9S4 .90 .95 .91 .94 .89 .96
.6 .992 .97 .98 1.00 .99 1.00 1.00
.7 .999 1.00 .99 1.00 1.00 1.00 1.00
.8 .999+ 1.00 1.00 1.00 1.00 1.00 1.00
.9 .999+ 1.00 1.00 1.00 1.00 1.00 1.00
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While the power of the permutation test cannot be expected

* to match that of the F test, these figures offer evidence

that it performs surprisingly well. For fixed p2 values,

the covariance structure appears to have no significant

effect on the power of the permutation test although that

conjecture remains an open question. To obtain more

numerical insight into that question, a larger scale simu-

lation was performed for p2 - .4 by running 6 independent

replications of size 100 for each covariance structure.

TABLE IV

Fraction Reje ted at .05 Significance Level
for P'-.4 - Additional Data

Stand.
Replication 1 2 3 4 5 6 Mean dev.

Case 1 .71 .82 .77 .78 .76 .84 .78 .046

Case 2 .70 .79 .82 .71 .81 .74 .76 .051

Case 3. .81 .78 .80 .82 .70 .74 .77S .046

These results certainly strengthen the credibility of the

conjecture that the power of. the permutation test depends

on the covariance structure only through the value of p

when no variable selection technique is used.

These results give some indication of the relative per-

formance of the permutation and F tests in situations where

the F test is valid. While the exact power function of the

F test is known (1), the mathematically untractable power func-

tion of the permutation test necessitates this Monte-Carlo

approach. In Chapter V, the application of this test to pro-

lems; of interest to management science will be investigated.



CHAPTER IV

POWER TRANSFORMATIONS OF

BIVARIATE SAMPLES

In the analysis of data it is often necessary to use a

power transformation to model the relationship between two

variables. An appropriate transformation may be suggested

by economic theories, physical properties, or other such

underlying considerations of the relation being studied.

On the other hand, there may be an absence of any such firm

theoretical or even historical indications. Upon inspection

of the scatter diagram, it may be obvious that a linear

relationship between the two variables is not appropriate.

For these situations, Mosteller and Tukey (19) suggest

considering a re-expression of one or both of the variables

so that the resulting relationship is more nearly linear.

They suggest a re-expression of the form (y+c)p where c and

p are constants. According to Mosteller and Tukey, the

value of c is often zero and the most commonly used powers

are p - 1/2, p - -1, and p - 1/3 in descending frequency

of use.

To aid practitioners in the selection of possible p

values, they offer a rule of thumb called the "bulging

rule." Using the scatter diagram in accordance with this

rule indicates what values of p should be considered. For
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the original y values, p is equal to 1. From this value of

p, the fundamental rule is to move on the "ladder" of pos-

sible values of p in the direction in which the bulge of the

scatter plot points. Figure 8 illustrates how to use this

ladder of powers to aid in the re-expression of y for four

kinds of bulging. If the scatter plot resembles curve (a),

movements up the latter and values of p larger than I should

be considered. The "bulging rule" may also be used to indi-

cate appropriate values for power transformations of x as

illustrated.

b a

y UP K y UP
x down x up

x down x up
y down y down

c d

Figure 8: The Bulging Rule

The purpose of this chapter is to report the results of

a study of the influence of this power transformation on the

sample linear correlation between the two variables when the

values of c and p are empirically determined in such a way

as to maximize the sample linear correlation R. Maximizing

R by empirically determining c and p does not coincide with

Tukey's notion of "straightening out" the data. The focus
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of this investigation is the possibility of artificially

high values for R when the true linear correlation is zero.

The motivation for this study was the question, "Is it

possible to significantly increase the sample linear corre-

lation between two variables by considering power trans-

formations of the dependent variable when the variables are,

in fact, independent?"

A simulation is performed in an attempt to answer this

question. Samples of size 10 are generated from a bivariate

normal population with mean vector (10, 10)' and covariance

matrix I. A mean of 10 and a standard deviation of 1 are

used to insure positive values for y since, according to

Mosteller and Tukey, y should represent an amount or count

if the re-expression (y+c)P is to be used. As a result of

this covariance structure, the theoretical linear corre-

lation is zero. Let R*(c,p) denote the sample correlation

between (y+c)p and x. Note that R*(c,l) - R for all c.

The values of c and p are determined via a two-dimensional

optimizing program in such a way as to maximize the value

of R*(c,p). Let R* denote this maximum value. A number of

such samples are considered with R and R values calculated

for each sample. A scatter plot of these pairs is given

in Figure 9. For certain samples, the sample linear

correlation is substantially increased.
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residuals reflect the fact that for extreme values of R,

values near.-1 or 1, the amount of inflation is not as

severe as in cases where R is originally small. Thus, if

the initial correlation is small in absolute value, there

is a greater potential for the power transformation to

result in an inflated value of R . This potential will be

investigated in more detail below.

* I
+3

- I

2I
11
Ii

1 I

~I

- 1 1

"( 11- 11 1
- I 11
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"l I 1 11

11

" I
" 1 1
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- I
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-'. -i 0 . . . 2. . 3 . . '

Figure 10: Scatter Plot of 30 Absolute Standardiaed Values

of Residuals vs R
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Examination of the simulation results reveals the fact

that the optimal transformations seem to cluster into two

categories. For each of these categories, the optimal value

of c tends to be the negative of the smallest y observation.

The optimal p values are either in the range 1.5-4.5 or the

search algorithm fails to identify an optimal p value. In

the latter case, R (-y(l) ,p) increases as p is decreased

toward zero. Examination of scatter plots reveals the

reason for this phenomenon. It is related to the so-called

"lollipop effect" whose name will become clear shortly.

Recall that

n

R1 n
Ru2)) (yS (

i-i i-li1 ( j

Obviously, if there is no linear relationship between x and

y, s(x,y) would be expected to be close to zero. Since only

transformations of y are being considered, the x values and,

thus, s(x) are fixed. Therefore, a transformation of y*I
yields a variable y that will be more linearly correlated

with x than y is if the resulting ratio s(x,y )/s(y*) is

larger than s(x,y)/s(y). When can such a possible transfor-

mation be expected to exist? The answer lies in the tnaly-

sis of the scatter plot of the (xy) pairs. If an extreme

value of y is associated with an extreme value of x, then it

is possible to use a transformation of the form y = (y.c)p
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to substantially increase the sample linear correlation as

shall be seen with the help of an example.

Table V gives a set of x and y pairs resulting from

a typical simulation run. Note that the smallest value of

y - 8.79 is paired with x a 8.89, the third smallest x.

Also, the deviation of this x from the mean, i, is -.96,

the third largest in absolute value. Some of the initial

statistics are R - .11, s(x,y) - .109, s(y) - 1.2S and

a 10.51. A transformation with parameter values as des-

cribed for the second type of optimality is found using the

search algorithm. That is, the smallest y value (8.79) is

subtracted from each of the y observations, and the resulting

differences raised to the power p * 0. These values are

given in Table V. Note that s(y*) - .317 is much smaller

than s(y) - 1.25. Thus, the influence of the transformation

on the value of s(x,y*) will determine if the sample linear

correlation is increased. Note that s(x,y) is a weighted

sum of deviations of x values about their mean. These

weights are the differences (y ). As a result of the

transformation, these deviations are small except for

(yl y ) -.90. The transformation reduces the varia-

bility of the dependent variable and associates with a large

x deviation the largest y deviation, which yields*i
s(x,y ) a .106. As a result of this transformation, R is

increased from .11 to R* a .41.
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TABLE V.

Values from Simulation Run

y x y

8.79 8.89 0
8.93 9.80 1
11.06 10.77 1
12.21 10.33 1
10.68 10.51 1
10.96 9.70 1
10.15 8.58 1
10.44 10.67 1
12.46 8.86 1
9.37 10.36 1

t*

- 1O.51 - 9.85 y - .90
s(y) - 1.25 s(x) a .82 s(y ) - .317

*

s(x,y) M .109 s(x,y ) - .106
R - .11 R - .41

This example illustrates the "lollipop effect." The

name is a result of the appearance of the scatter diagram
*

of the (x,y ) pairs (see Figure 11). The optimal trans-

formation isolates one point while grouping the remaining

points giving the data set a lollipop appearance.
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Figure 11: Scatter Plot~of 10 Standardized Values
of Y vs. X

It has been shown that it is possible to inflate the

value of R using an empirically-determined power transfor-

mation when the two variables are actually independent.

However, this "inflation" should not go undetected. A resi-

dual plot, such as Figure 12 for the above example, indicates
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this lollipop effect. Upon inspection of suGh residuals,

the experienced data analyst should not fail to realize the

reason for this anomaly and reject the method sumarily.
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Figure 12: Scatter Plot of 10 Standardized Values
of Residuals vs. X
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For some samples, it has been shown that the "lollipop

effect" creates a substantially increased value of the

sample linear correlation. Even samples from correlated,

bivariate populations may have the potential for this

phenomenon. The following theorem gives insight into this

potential for any bivariate sample.

Theorem: For a bivariate sample of size n, Cyl,x I) ',

(y2,x2)',...,(ynXn)', let yj be the smallest y value in
* *

the sample and let y be transformed to y so that y* = 1

for i a 1,2,...,n, i 0 j and y* 0. Then the value of
* *

the simple linear correlation, R , between y and x is

given by

*" F(I-x.)R Ln-I~s~xJ i

and the estimate of the parameters in the regression of y

on x, given by

y* = bo + b x + e,

are

A X-X

b and
b C(n-.)sx))

A

b aal
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Proof: Obviously, y - (n-1)/n. Thus

n )

2n1 1 _____) -.[s(y)] " - CT - O- (1-))2) " 1i"
iin n n

i#j

Therefore,

n ( x -i)( - n1-) + (x-X)(o -(n-)
i i n n

R N ij

s (x) /17n

Furthermore,

b * C "xi)

R TX1 (n-1)(s(x))z

and

b y (n-l)/n - .  Q.E.D.

If the sample deviation, s(x), is "small" relative to

the deviation from the mean of the x value corresponding to

the smallest y observation, then the resulting R may be

substantially inflated. Two examples will help illustrate

this point.
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In the first example, a sample of size 10 is taken from

a bivariate normal population with mean vector (10, 10)' and

covariance matrix

1 . )
A scatter plot of these points appears in Figure 13.

The theoretical correlation is .5, and the sample corre-

lation is .66. Note that the smallest value of y which is

8.54 is associated with the smallest x value which is 7.04.

Thus, an inflated value of R is expected. Using the

above theorem, we have

* V'- (I-x.)Re T (-xr ) 3 1 0-7.04)=8
R n-__sLx)_(_. .84.

II l i~ x .. .. ...... j



+.3

+2

*1 1

-3

-zX

- 3 - - - - -1 0 1 2 - - - -

Fiue1:Scatter Plot of 10Standardized Values 2



S2

Figure 14 is the scatter plot of 10 observations from

and tovariance matrix

1 .S

.81

The theoretical correlation is .8, and the sample cor-

relation is .82. Note that the smallest yt 9.36, is paired

with an x, 9.67, which is near its sample mean of 10.18.

Thus, the above transformation might result in a small value

of R as seen by

* ,/10. o18- 9.67) -3
S ()(.77J34.
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Figure 14: Scatter Plot of 10 Standardized Values

Y vs. X

The use of empirically-determined power transformations

may lead to inflated values of the sample linear corre-

lation. The potential for this phenomenon has been demon-

strated for independent and correlated bivariate samples.

However, the fact that the value is inflated should not go

undetected. An inspection of the resulting residuals should

aid the data analyst in spotting this "lollipop effect".



CHAPTER V

APPLICATIONS OF PERMUTATION TEST

In this chapter the applicability of the statistical

procedures developed previously to problems of parametric

cost estimation is illustrated. Parametric cost estimation

is a management tool used to aid in the prediction of the1j

cost of a proposed system. It involves predicting the cost

(dependent variable) of a system by means of explanatory

(independent) variables such as system characteristics or

performance requirements. This procedure is based on the

premise that the cost of a system is related in a quanti-

fiable way to the system's physical and performance charac-

teristics (14). The expression of this quantifiable

relationship is in the form of an estimating equation de-

rived through statistical regression analysis of historical

cost data on systems which are, more-or-less, analogous to

the proposed system. Since parametric cost estimates can be

developed during the conceiut formulation stage of the acqui-

sition process before engineering plans are finalized, these

estimates can be used by management to (14):

1. Identify possible cost/performance tradeoffs
in the design effort.

2. Provide a basis for cost/effectiveness review
of performance specifications.

3. Provide information useful in the ranking of
competing alternatives.
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4. Suggest a need for investigating new
alternatives.

In particular, examples of parametric cost estimation

for Navy weapon systems will be considered. Cost overruns

have been prevalent in the acquisition of new weapon systems

making cost estimation a very important problem for all

components of the Department of Defense. These overruns

result in very difficult budget decisions and a decrease

in the Congress's confidence in the managerial ability of

military leaders. For fiscal year 1971, the Navy experi-

enced a cost growth of $19 billion on 24 weapon systems;

15% of this cost growth was attributed to poor initial cost

estimates (14). Historically, the Navy has used industrial

engineering techniques to develop estimates of the cost of

a proposed system. These techniques required detailed

studies of the operations and materials required to produce

the new system. Although a great deal of time and effort

is required to produce these estimates, there is considerable

uncertainty remaining as evidenced by the overruns mentioned

above. In addition, slight design changes can vitiate the

estimate and neccessitate a complete restudy. To help im-

prove such performance, the Department of Defense has

issued directives to all branches of the service to employ

independent parametric cost estimation. Publications such

as (14) have appeared which give step by step methodology

for the development of a parametric cost estimate.
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Regression problems faced by costing and pricing analysts

in these situations are inherently difficult for two funda-

mental reasons (20):

1. The number of observations is usually small
campared with the number of system character-
istics which are candidate components of the
regress ion equation.

2. The available data is not produced by employing
an efficient experimental design, but by what
Box (4) calls "unplanned happenings."

Under these circumstances, it has been shown that the

use of variable selection techniques may result in regres-

sion equations which yield inflated R 2 values whose statis-

tical significance cannot be tested using the F test.

One approach for the development of a parametric cost

estimate involves breaking the system up into component

subsystems and using a separate model to estimate the cost

of each component. This process, called disaggregation (14),

will generally result in better subsystem cost estimates,

and if these estimates are independent, a combined estimate

of system cost can be obtained in the obvious way. For

example, a cost estimate may be desired for the construction

of a new submarine under consideration. A possible compo-

net subsystem would be its sonar system. A cost estimate

of this subsystem might be based on a model with such can-

didate predictors as weight and volume of the Internal

electronics, number of hydrophone amplifiers, power output,

sensitivity, the year that the sonar system became fleet

operational, etc. Total system cost is then estimated by
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* reaggregating subsystem estimates. The determination of a

confidence interval for the total system cost is a difficult

problem and remains unsolved. The difficulty is a result

of the lack of understanding of the effect of interactions

among the subsystems on the factors influencing total cost.

The development of cost-estimating models for missile sub-

systems will be explored via data obtained from the Naval

Weapons-Center at China Lake,, California. The data has

been sanitized for security reasons without destroying the

relationships between variables.

Table VI presents historical data on the cost and

* relevant performance characteristics of a certain type of

system which we shall designate Subsystem A. Presumably,

values of X19X,.,X of a proposed system will be sub-

stituted into the prediction equation developed for the

data in Table VI in order to produce a cost estimate of

the proposed system. As is typical for parametric costing

problems, the number of observations available is not large

compared to the number of candidate predictors. Here,

there are 8 observations on the cost and 7 system charac-

* teristics. With the information provided in this data,

we want to determine the performance characteristics which

provide a model that will best estimate the cost of the

proposed subsystem.
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TABLE VI.

Cost Data for Subsystem A

XI  X2  X3  X4  X$ X6 X7  Y

1.09 2.06 0.41 2.48 1.08 0.00 0.00 0.00
1.09 2.06 0.41 2.48 2.17 0.03 0.00 0.02
1.09 2.06 0.41 2.48 2.17 0.03 0.00 0.04
0.00 0.21 0.00 0.00 0.00 2.12 0.56 0.78
0.00 0.62 0.12 0.19 0.00 2.22 0.64 0.65
2.38 0.00 1.39 1.24 0.54 1.89 2.08 2.47
2.38 0.00 1.39 1.24 2.17 1.84 2.08 1.96
2.38 0.00 2.99 1.24 2.17 0.91 2.17 1.94

A stepwise regression algorithm is applied to the data

yielding:

1. the best singlervariable model

y. .06 .98 xV, (1)

2. the best 2-variable model

y- .20 - .12 x + .99 x 7 . (2)

The R2 associated with model (1) is .964 and that with

model (2) is .978. Thus, the data analyst night consider

using the single-variable model to obtain a cost estimate

since, as mentioned in a previous chapter, the variance of

prediction cannot be reduced by adding variables to the

regression equation. The standard F test applied to this

model yields a highly significant

L.
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F - R2 (n-p'l) - 159.57.
(l-RZ)p

Having shown that the use of variable selection tends

to inflate the value of the F statistic, we consider the

permutation test. Since a significance level of .05 is

desired, 19 random permutations must be used. For each per-

mutation, the stepwise algorithm is used to determine the2!
best single-variable model. The R2 value associated with

this model is saved. Recall that the rejection rule is to

reject Ho: p2 a 0 if R2, which is .964, exceeds R2(19) where

R2(19) is the largest R2 observed in the sample of perau-

tations. Figure 15 gives a stem and leaf display of the

20 R2 values.

Note that the largest sample value of R2 is .897.

Thus, R2 > R2(19), Ho is rejected, and it is concluded that

the single-variable model is significant at the .05 level.

A cost estimate for the proposed system is obtained by

evaluating this single-variable model at the value X7 of

the proposed system.
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2
0.9 64 (-R*)
0.8 97
0.7
0.6 13,92
0.5 13,21
0.4 12,$7,64
0.3 09,43
0.2 22,26,27,3S
0.1 42,55,66
0.0 25,68

Figure 1S: Stem and Leaf of R2 Values for Subsystem A

Historical information for systems similar to a pro-

posed system designated as Subsystem B appears in Table VII.

Six observations are supplied on the cost of the system and

7 of its operating characteristics. Again a step-wise

algorithm is applied to the data, and it yields the

following models:

1. ^ -.23 + .88 xI , (3)

2. 9 a -1.19 + .96 x I + .46 x7. (4)

The R2 values for models (3) and (4) are .768 and .978,

respectively. The two-variable model appears to do the

better job, but both will be analyzed.

'i" 
7
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TABLE VII.

Cost Data for Subsystem B

X1  2  3  4  5  6  7  Y

0.00 0.00 0.72 0.SS 1.95 2.94 2.04 0.00
0.79 1.57 0.72 0.00 0.24 1.56 2.04 0.42
0.79 1.57 0.72 0.00 0.24 1.56 2.04 0.37
2.91 1.57 2.40 0.00 2.15 1.10 2.26 2.74
0.79 2.32 2.40 0.34 0.00 0.00 2..99 0.85
1.58 0.17 0.00 2.56 0.04 0.64 0.00 0.28

The F test yields: for (3), F - 13.33 > F(.0S,1,4) -

7.71 and for (4) F - 66.93 > F(.05,2,3) - 9.55. Therefore,

both models appear to be significant at the .0S level. Once

again the permutation test is applied using 19 random per-

mutations of the cost values. Figures 16 and 17 present

stem and leaf histograms for the R2 values associated with

the best one- and two-variable models, respectively.

1.0
0.9 4S
0.8 02,22,36 2
0.7 28,28,68(-R*),88
0.6 62,66,70
O.S 24
0.4 82,97
0.3
0.2
0.1 00,44,78
0.0 70,79,98

Figure 16: Stem and Leaf of R2 Values for
One-variable Models
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1.0
0.9 62,72,78(-Ri),7S,89
0.8 31,31,32,44,64,78
0.7
0.6 20o28,90
0.5
0.4 09
0.3 13
0.2 10,14
0.1 60,87
0.0

Figure 17: Stem and Leaf of R2Values for
Two-variable Models

First of all, consider the results for the one-variable

model. The largest value of RZin the sample is .945, which

prohibits the rejection of H0 . Also, note that the value of

Rassociated with the unpermuted data, .768, is surpassed

by a number of other sample R 2 values. This tends to give

more evidence that the one-variable model given by (3) is

not statistically significant. For the two-variable model,

the largest sample value of R2is .989. Once again Ho

cannot be rejected. The two-variable model appears not to

be statistically significant. Based upon these results,

the analyst would conclude that none of the proposed models

provide a statistically significant fit for the cost of this

subsystem.

In general parametric cost estimation, a researcher

should not blindly trust the regression equation resulting

for his analysis. To measure the "goodness of fit", the
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analyst can use such statistics as RZ and F. However, there

are few hard and fast rule.s for assessing the usefulness of

such a model. This is especially true of models that result

from the application of a variable selection technique. The

R and F statistics in these situations may not give a meaning-

ful indication of the model's applicability. More than just

a model's statistics are needed if an analyst is to be

satisfied that a model will accurately predict the system's

cost. By obtaining a good knowledge of the kind of equip-

ment with which he is dealing -- its characteristics, the

state of its technology and the available data, the analyst

will be able to develop a particular model structure based

on sound technological reasoning.

In situations where a variable selection technique is

applied to the data to obtain a "best" prediction equation,

the permutation test can aid the researcher in the oval-

uation of this model. It allows the analyst to perform a

valid test of hypothesis of the statistical significance

of the particular model structure. In situations such as

that demonstrated for Subsystem B, where the test indicates

that the model is not statistically significant, the data

available is such that the possibility of chance correlation

is likely. Possible recourses that may be useful:

1. Recheck the definitions used for the para-
metric and cost data.

2. Collect more observations to improve the data
base.
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3. Validate any-questionable data points that
lie outside the expected range of values.

In any event, the permutation test is another tool that

the researcher can use in evaluating the suitability of the

cost estimating equation.

0

• ?



CHAPTER VI

CONCLUSIONS

In empirical model building, unlike confirmatory sta-

tistical inference, the situation of working with a given

model which possesses certain appealing properties is not

assured. The statistical properties of the process under

investigation are generally complex and not well understood.

The researcher is forced to draw ad hoc inferences from what

is often nonexperimental data. In these situations, much of

the traditional theory is not valid. In this disseration.

* is has been illustrated that pedestrian use of such tech-

niques as variable selection and transformations may result
2

in models whose R values are misleadingly large.

Leamer (12) considers the purpose of the data-dependent

process of selecting a statistical model to be "data-

mining": using empirical analysis to bring to the surface

the nuggets of truth that may be buried in a data set. The

researcher has available a plethora of possible statistical

computer packages to help bring these nuggets to the sur-

face. To help distinguish precious stones from fool's gold,

the researcher must depend on his judgment and experience

and the extant statistical theory. In situations where a

variable selection technique has been employed, there is a

paucity of viable statistical methods to aid in the
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assessment of the resulting model. Important methods such

as residual analysis and cross-validation have not been

considered in this study. Such techniques can offer the

researcher valuable information about the model specifi-

cation. However, these specification checks become less

effective when the number of sample observations is small.

The concentration here has been on the investigation

of the statistical properties of R2 in such situations.

These efforts have resulted in some theory, some informa-

tive simulations, and some interesting applications. A

statistical test for hypotheses of interest for models

resulting from selection techniques has been developed.

This result, the permutation test presented in Chapter III,

fills the void of valid statistical tests created as a

result of the use of data analytic procedures. In situations

where the classical F test cannot be used, this test gives

the researcher a method for testing the significance of his

model. This permutation test is actually an application of

an old technique (Fisher's randomization test) in an area

of practical importance where theoretical results have

been elusive.
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